If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n-n^2=-9
We move all terms to the left:
4n-n^2-(-9)=0
We add all the numbers together, and all the variables
-1n^2+4n+9=0
a = -1; b = 4; c = +9;
Δ = b2-4ac
Δ = 42-4·(-1)·9
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{13}}{2*-1}=\frac{-4-2\sqrt{13}}{-2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{13}}{2*-1}=\frac{-4+2\sqrt{13}}{-2} $
| 2u-5=2u+3-4u | | 13x+31x=88 | | 2+r=-+6r | | 8p/5=16 | | 3x^2+x-444=0 | | 2k3=15 | | –x–2=–12 | | 12x=2x+34567x | | 35x=15x | | 4x²-15x+18=0 | | x2-6x+16=0 | | x²—6x+16=0 | | (i-23)^48=0 | | (1+i/12)^48=2 | | 4x+40°+x+76°=180° | | 4/5x-20=x | | ((12+i)/12)^48=2 | | F(X)=(6x^2+7x)^4 | | +12=-6d | | 5x2−2x−18=1125 | | 5^x^2−2x−18=1/125 | | x-0.4x=26.40 | | x-0.4x=30.36 | | x-0.4x=51.48 | | x-0.4x=79.80 | | x-0.4x=50 | | x-0.16x=63 | | x+62=28 | | (15)2x+4=253x | | x-0.16x=82.80 | | k/6+k/2=0 | | 4y2-4y+3=0 |